184 research outputs found

    Weighted Sobolev theorem in Lebesgue spaces with variable exponent

    Get PDF
    For the Riesz potential operator I-alpha there are proved weighted estimates [GRAPHICS] within the framework of weighted Lebesgue spaces L (P(center dot)) (Omega, omega) with variable exponent. In case Omega is a bounded domain, the order alpha = alpha (x) is allowed to be variable as well. The weight functions are radial type functions "fixed" to a finite point and/or to infinity and have a typical feature of Muckenhoupt-Wheeden weights: they may oscillate between two power functions. Conditions on weights are given in terms of their Boyd-type indices. An analogue of such a weighted estimate is also obtained for spherical potential operators on the unit sphere S-n subset of R-n. (c) 2007 Elsevier Inc. All rights reserved.info:eu-repo/semantics/publishedVersio

    A Priori Estimates for Solutions of Boundary Value Problems for Fractional-Order Equations

    Full text link
    We consider boundary value problems of the first and third kind for the diffusionwave equation. By using the method of energy inequalities, we find a priori estimates for the solutions of these boundary value problems.Comment: 10 pages, no figur

    Stochastic Differential Equations Driven by Fractional Brownian Motion and Standard Brownian Motion

    Full text link
    We prove an existence and uniqueness theorem for solutions of multidimensional, time dependent, stochastic differential equations driven simultaneously by a multidimensional fractional Brownian motion with Hurst parameter H>1/2 and a multidimensional standard Brownian motion. The proof relies on some a priori estimates, which are obtained using the methods of fractional integration, and the classical Ito stochastic calculus. The existence result is based on the Yamada-Watanabe theorem.Comment: 21 page

    Operators of harmonic analysis in weighted spaces with non-standard growth

    Get PDF
    Last years there was increasing an interest to the so-called function spaces with non-standard growth, known also as variable exponent Lebesgue spaces. For weighted such spaces on homogeneous spaces, we develop a certain variant of Rubio de Francia's extrapolation theorem. This extrapolation theorem is applied to obtain the boundedness in such spaces of various operators of harmonic analysis, such as maximal and singular operators, potential operators, Fourier multipliers, dominants of partial sums of trigonometric Fourier series and others, in weighted Lebesgue spaces with variable exponent. There are also given their vector-valued analogues. (C) 2008 Elsevier Inc. All rights reserved.INTAS [06-1000017-8792]; Center CEMAT, Instituto Superior Tecnico, Lisbon, Portugalinfo:eu-repo/semantics/publishedVersio

    On a initial value problem arising in mechanics

    Full text link
    We study initial value problem for a system consisting of an integer order and distributed-order fractional differential equation describing forced oscillations of a body attached to a free end of a light viscoelastic rod. Explicit form of a solution for a class of linear viscoelastic solids is given in terms of a convolution integral. Restrictions on storage and loss moduli following from the Second Law of Thermodynamics play the crucial role in establishing the form of the solution. Some previous results are shown to be special cases of the present analysis

    Fractional Loop Group and Twisted K-Theory

    Full text link
    We study the structure of abelian extensions of the group LqGL_qG of qq-differentiable loops (in the Sobolev sense), generalizing from the case of central extension of the smooth loop group. This is motivated by the aim of understanding the problems with current algebras in higher dimensions. Highest weight modules are constructed for the Lie algebra. The construction is extended to the current algebra of supersymmetric Wess-Zumino-Witten model. An application to the twisted K-theory on GG is discussed.Comment: Final version in Commun. Math. Phy

    Subdiffusive transport in intergranular lanes on the Sun. The Leighton model revisited

    Full text link
    In this paper we consider a random motion of magnetic bright points (MBP) associated with magnetic fields at the solar photosphere. The MBP transport in the short time range [0-20 minutes] has a subdiffusive character as the magnetic flux tends to accumulate at sinks of the flow field. Such a behavior can be rigorously described in the framework of a continuous time random walk leading to the fractional Fokker-Planck dynamics. This formalism, applied for the analysis of the solar subdiffusion of magnetic fields, generalizes the Leighton's model.Comment: 7 page

    Fractional Hamilton formalism within Caputo's derivative

    Full text link
    In this paper we develop a fractional Hamiltonian formulation for dynamic systems defined in terms of fractional Caputo derivatives. Expressions for fractional canonical momenta and fractional canonical Hamiltonian are given, and a set of fractional Hamiltonian equations are obtained. Using an example, it is shown that the canonical fractional Hamiltonian and the fractional Euler-Lagrange formulations lead to the same set of equations.Comment: 8 page

    On Fourier transforms of radial functions and distributions

    Full text link
    We find a formula that relates the Fourier transform of a radial function on Rn\mathbf{R}^n with the Fourier transform of the same function defined on Rn+2\mathbf{R}^{n+2}. This formula enables one to explicitly calculate the Fourier transform of any radial function f(r)f(r) in any dimension, provided one knows the Fourier transform of the one-dimensional function tf(t)t\to f(|t|) and the two-dimensional function (x1,x2)f((x1,x2))(x_1,x_2)\to f(|(x_1,x_2)|). We prove analogous results for radial tempered distributions.Comment: 12 page

    Fractional conservation laws in optimal control theory

    Full text link
    Using the recent formulation of Noether's theorem for the problems of the calculus of variations with fractional derivatives, the Lagrange multiplier technique, and the fractional Euler-Lagrange equations, we prove a Noether-like theorem to the more general context of the fractional optimal control. As a corollary, it follows that in the fractional case the autonomous Hamiltonian does not define anymore a conservation law. Instead, it is proved that the fractional conservation law adds to the Hamiltonian a new term which depends on the fractional-order of differentiation, the generalized momentum, and the fractional derivative of the state variable.Comment: The original publication is available at http://www.springerlink.com Nonlinear Dynamic
    corecore